If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+32x+19=0
a = 7; b = 32; c = +19;
Δ = b2-4ac
Δ = 322-4·7·19
Δ = 492
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{492}=\sqrt{4*123}=\sqrt{4}*\sqrt{123}=2\sqrt{123}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-2\sqrt{123}}{2*7}=\frac{-32-2\sqrt{123}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+2\sqrt{123}}{2*7}=\frac{-32+2\sqrt{123}}{14} $
| 18x−498=18x−498= | | 10+0.07(15x)0+9x=15x | | 10+0.07(15x0+9x=15x | | 12-7•x=16 | | 2y+13=y+22 | | 21p+1p=11-3p | | 2(x+1)=-30 | | x³+10x²+21x=0 | | x^2(x+2)-x(x+2)=0 | | 2x2-6x=-8 | | 23(6x+30)=x+5(x+4)−2x | | 5−8x=3x2−12x+3 | | 2z+21=9z | | 5(x-3)=7x/2 | | 3x+3x+3xx=5x | | 3*(4*1)=(3*4)*x | | 9p+17-16=19 | | (x+4)(x+1)=x–(x–2)(2–x) | | 7×(10×n)=(7×10)×0 | | 20y-10=15y+10 | | (4n-20)=n+(2n+20) | | 12x+5=29-12x | | 3/y+2=7/2y | | 10y-16=34 | | Y=7/6x+4 | | 5a^2-16=2a | | 12-7×x=16 | | 6(t+1)=6 | | 4x-50=-6x+100 | | 5x-13x+1x-5=17 | | 14x-28=11x+77 | | 12=12*x |